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LONG-TERM GOALS 
 
The US Navy needs to know how distributions and abundances of light-scattering and sound-scattering 
organisms in the ocean vary in space and time, particularly in the vertical dimension.  Recent field 
observations have shown that many biological properties may vary substantially over small (e.g. 
centimeter) scales, commonly referred to as “thin layers” (e.g. Cowles et al. 1998, 1999, Hanson & 
Donaghay 1998, Holliday et al. 1999, Dekshenieks et al. 2001, Alldredge et al. 2002, Rines et al. 
2002).  Our previous ONR-funded research has allowed us to begin to understand how zooplankton 
interact with thin layers and how they can take advantage of biomass of prey concentrated in these 
small-scale features (Avent et al. 1998, Bollens 2000, Bochdansky & Bollens 2004, Clay et al. 2004, 
Ignoffo et al., 2005).  However, there is almost no information regarding how zooplankton can 
influence the characteristics and persistence of thin layers. 
 
In this project we proposed to address this issue, with two main long-term goals:  First, to determine to 
what extent zooplankton graze and export carbon from thin layers; and second, to determine whether 
and how zooplankton influence the physical (e.g. optical and acoustical), chemical, and biological 
characteristics of thin layers with their presence.  These goals require determination of rate processes 
such as feeding activity and excretion, which are very difficult to assess in the field.  Thus our research 
is focused on detailed experimental studies of biological rate processes and behaviors that contribute to 
the recycling and expert of material in and around thin layers. 
 
OBJECTIVES 
 
The four primary objectives of our proposed research are:  
 
1)  To understand the spatial (vertical) coherence and temporal persistence of phytoplankton thin layers 
with and without the impact of zooplankton grazing. 
 
2)  To understand biological rate processes that influence the carbon budget within and in the 
immediate vicinity of thin layers. 
 
3)  To separate local (within thin layers) from non-local (elsewhere in the water column) effects on the 
thin layers, depending on the type of zooplankton grazers that utilize thin layer organisms as food 
sources. 
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4) To understand to what extent zooplankton return inorganic nutrients to the autotrophs in the layers 
and thereby influence the persistence and spatial expanse of thin layers. 
 
Our primary hypothesis is that trophic processes alter the flux characteristics of organic carbon and 
inorganic nutrients such as ammonia and phosphorus in the thin layers and in the immediate vicinity of 
the layers, thereby changing essential properties of the layers (such as persistence, vertical expanse, 
biological productivity and export flux).  Organisms that aggregate and subsequently stay confined 
within the layers (e.g. microzooplankton such as ciliates, dinoflagellates or rotifers) will have a 
different effect on recycling and export fluxes than organisms that only transiently visit these layers 
(e.g. mesozooplankton such as copepods).   
 
APPROACH 
 
Experimental plankton towers:  All experiments are being conducted using a plankton tower tank 
system installed in the Bollens laboratory at Washington State University Vancouver (Fig. 1).  This 
tower tank system has been used successfully in several previous studies (Speekmann et al. 2000, 
Lougee et al. 2002, Clay et al. 2004, Bochdansky & Bollens 2004, Ignoffo et al., 2005), and was 
slightly modified for the current project by the addition of valves to allow for 5 cm-spaced 
subsampling of the tanks in and around the thin layer, installing ethanolamine CO2 traps to prevent 
14CO2 release into the atmosphere, and additional high-pressure sodium vapor light sources to increase 
the range of light intensity for work with autotrophic organisms.  In addition to the PI (Bollens) and 
Co-PI’s (Rollwagen-Bollens and Bochdansky), three research technicians from Washington State 
University Vancouver (Rian Hooff, Angela Gibson, and Celia Ross) have been responsible for the set-
up and maintenance of the tower tank system.  Mr. Hooff oversees the operation of the tanks and video 
recording, and Ms. Gibson and Ms. Ross are responsible for culturing all experimental organisms as 
well as monitoring radiation safety, in consultation with the Washington State University Radiation 
Safety Office (note: as of July 1, 2007 Ms. Ross has taken over full responsibility for the culturing 
operations). 
 

 
Figure 1.  Two-meter high columnar tanks are illuminated by natural light simulators, 

 which incorporate neutral density filters to adjust light intensity.  The entire vertical extent 
 of each tank, with a thin layer of phytoplankton, is repeatedly scanned and imaged 

 with an infrared-sensitive video camera to record zooplankton distribution. 
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Most of the experiments in this research project will be conducted in the first two grant years of the 
award period (2006 – 2009), which will overlap with portions of the ONR field program: Layered 
Organization in the Coastal Ocean (LOCO) being conducted in Monterey Bay, CA.  The third grant 
year is currently planned for data analyses, synthesis and publication.  Two graduate students (Mr. Joel 
Quennette from Washington State University and one to be named from Old Dominion University) 
will work in tandem on the behavioral and physiological aspects, respectively, of the research.  In 
addition, a third graduate student (Ms. Joanne Breckinridge of Washington State University 
Vancouver) will work on a separate, but related, project examining larval decapod distribution and 
vertical migration in relation to physical structure (i.e. thin layers) in the water column of estuaries. 
 
Effect of microscale distribution of zooplankton:   We are determining the fine-scale distribution of 
autotrophic and heterotrophic protists in the tanks using an external DFL flourometer (as used in 
Bochdansky & Bollens 2004), and via direct counts of cells from water obtained through the sampling 
valves.  Mesozooplankton distributions are determined via videomicroscopes that regularly pan the 
length of the tower tank and record onto VHS tapes.  Details on the statistical analyses of distributional 
data resulting from these experiments can be found in our previous thin layer papers (see references 
above), as well as in Solow et al. (2000) and Beet et al. (2003).  In Year 1 (2005-2006) these 
“behavioral” experiments were conducted simultaneously with radioisotope experiments to measure 
the redistribution of carbon in and around thin layers (please see Bollens et al. annual report, 
September 2006).  In Year 2 (2006-2007) the behavioral experiments are being conducted with another 
set of radioisotope experiments described below. 
 
Redistribution of phosphorus by thin layer organisms (i.e. vertically-migrating phytoplankton):  
In our Year 1 experiments, we labeled non-migrating phytoplankton cells with 14C and observed the 
redistribution of labeled carbon through the water column in the presence of micro- vs. 
mesozooplankton grazers.  In Year 2, we are establishing a nutricline near the bottom of the 2-m tanks 
using radiolabeled phosphorus (added as NaH2

33PO4) in f/2 medium and introducing cultured 
Akashiwo sanguinea (=Gymnodium sanguineum) to the surface layer containing nutrient-free seawater.  
As in previous experiments, we also introduce a salinity gradient to the center of the tanks in order to 
avoid physical mixing of the phytoplankton with the surrounding water (Bochdansky & Bollens 2004).  
Akashiwo sanguinea is a highly motile mixotrophic dinoflagellate that commonly forms dense surface 
and subsurface aggregations in Monterey Bay and other estuaries on the US west coast (Horner et al. 
2001).  Notably, during the 2005 LOCO field program, A. sanguinea was the dominant thin-layer 
organism.  Akashiwo sanguinea has also been observed to vertically migrate in the water column from 
the surface into the nutricline in coastal bays and estuaries, including Monterey Bay Donaghay et al. 
2007).   
 
Phosphorus taken up by A. sanguinea in the lower part of the tanks may be incorporated into biomass 
and/or excreted or defecated elsewhere in the water column.  In addition, phosphorus may move 
upward in the tanks due to passive diffusion.  The redistribution of phosphorus is monitored over time 
(48 hours) at 6-12 hour intervals and over the space of the 2 m tower tanks by taking samples through 
valves positioned along tanks’ walls.   The samples are filtered over GF/F filters to separate the 
dissolved and particulate fractions, then further subsampled and processed to distinguish inorganic 
phosphorus from total phosphorus, with organic phosphorus determined by difference.  These steps are 
followed to track radiolabelled phosphorus (33-P) as well as non-labelled phosphorous (Fig. 2).  
Isotope analysis is being conducted using a Packard Tri-Carb 2100 TR liquid scintillation counter.  
Soluble reactive phosphorus was determined using the ammonium molybdate reagent (Parsons et al. 
1985). Total dissolved phosphorus (including organic phosphorus) and particulate phosphorus on GF/F 
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filters were determined after muffling and acid digestion (Solorzano & Sharp 1980)    All instruments 
are housed at Washington State University Vancouver.   
 
WORK COMPLETED 
 
We performed four sets of experiments in June 2007.   The first experiment was run “cold” (i.e. 
without radiolabelled phosphorous) in order to assess Akashiwo sanguinea behavior and determine the 
appropriate nutrient levels, etc.  The remaining three experiments were all conducted with 
radiolabelled 33-P.  Each experiment consisted of a control tank (nutricline with no Akashiwo 
sanguinea) and three treatment tanks, each with a nutricline and identical concentrations of A. 
sanguinea but varying light levels (low, medium, and high).  Nutrient concentrations in the lower part 
of the tank were set to mimic values observed in Monterey Bay during LOCO cruises in 2005 (data 
courtesy Al Hanson, SubChem Systems). 
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Figure 2.  Flow chart illustrating the sample processing procedures to fractionate  

dissolved and particulate phosphorous, and further measure inorganic  
dissolved/particulate phosphorous and total dissolved/particulate phosphorous concentrations. 
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RESULTS 
 
We observed a difference in the day and night vertical distributions of Akashiwo sanguinea in the low 
and medium light treatments as compared to the high light treatment (Fig. 3).  A. sanguinea in the low 
and medium light tanks showed a clear migratory pattern, aggregating near the surface during the day 
(noon) and distributed evenly through the lower part of the 2-m water column at night (midnight).  In 
addition, the migration appeared to be anticipatory, i.e. upward migration began before the lights came 
on or off.  Conversely, A. sanguinea in the high light treatment were distributed more evenly through 
the tank and with a smaller peak at the nutricline during both day and night.  This suggests that the 
dinoflagellates were either light inhibited and not migrating, or that they had sufficient light at all 
depths and thus migration was not necessary.  Discerning between these, or other possible, 
explanations will be the focus of additional behavioral experiments in Year 3. 
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Figure 3.  Vertical migration of Akashiwo sanguinea in experimental tanks.  Distibution of A. 
sanguinea is shown as relative fluorescence units (RFU) using a fluorometer through the tank 
walls, tracking the distribution of the dinoflagellates without disturbing organisms or nutrient 

gradients.  A. sanguinea forms dense layers at the surface during the day when light is limited (d & 
e).  When light is sufficiently strong at the nutricline (dashed line), A. sanguinea stays at depth 

during the day (f). Figures on top of each other depict the same tank. 
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We also observed a distinct difference in the net uptake of dissolved 33-P by Akashiwo sanguinea 
depending on light level relative to the control (Fig. 4).  In all three treatments (low, medium and high 
light) there were very small increases in dissolved 33-P in the upper water column.  However there 
were substantial net losses of dissolved 33-P in the lower water column in all treatments, indicating 
utilization of 33-P in all tanks with A. sanguinea present, with the degree of net loss increasing with 
increasing light level.   
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Figure 4.  Net changes in 33-P content in the dissolved fraction in comparison to a control tank not 

containing Akashiwo sanguinea.  Phosphorus is taken up at depth (below the nutricline; dashed 
line) and moved towards the top of the water column in an upwards biological pump due to the 

migration of A. sanguinea. The released dissolved organic material is composed of both inorganic 
and organic phosphorus. The strength of the phosphorus transfer is light dependent: a) 1.4 μE m-1 

s-1, b) 76 μE m-2 s-1, c) 325 μE m-2 s-1. 
 
 
Finally, we calculated the net incorporation of phosphorus into Akashiwo sanguinea (particulate 
fraction) over 48 hours for each experiment (correcting for isotope “dilution” with the non-labelled 31-
P).  These results further demonstrate the differing effect of light level, with higher incorporation rates 
in the high light treatment compared to the low and medium light treatments (Fig. 5). 
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Figure 5.  Isotope tracer experiments with the migrating dinoflagellate Akashiwo sanguinea.  Water 

column-integrated incorporation of 33-P into the particulate fraction is dependent on irradiance 
levels over a 48 hour time course.  Circles: experiment 1, triangles: experiment 2, squares: 

experiment 3.  For comparisons, experiments were corrected for radioactive decay of 33-P (half life 
of 25.4 days), and for the molar isotope dilution of 33-P in the 31-P medium.  Experiments differed 

in cell concentrations of A. sanguinea which is reflected in the elevations of the regression lines. 
 
 
IMPACT/APPLICATIONS 
 
This research will be an important contribution to the Thin Layers program, as it directly addresses the 
influence of zooplankton on rate processes in thin layers, and moreover addresses the influence of 
migrating thin layer phytoplankton on the distribution of major nutrients within and around thin layers.  
While field studies have to rely primarily on inference from distributions, our controlled laboratory 
experiments will provide flux patterns of important inorganic and organic nutrients in and around thin 
layers.  In this experimental setting we are able to manipulate predator – prey ratios and available 
nutrients.  We will therefore be able to understand potential effects of zooplankton on the persistence 
and internal dynamics of thin layers, as well as the effect of thin layer phytoplankton themselves.  Our 
experimental work will provide sufficient data to allow us to make predictions about the contribution 
of biological processes to thin layer dynamics given the presence and abundance of various plankton 
species found in the field.   
 
RELATED PROJECTS 
 
This research is relevant to virtually all of the many field studies previously and currently being 
undertaken within the “Thin Layers” program. 
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